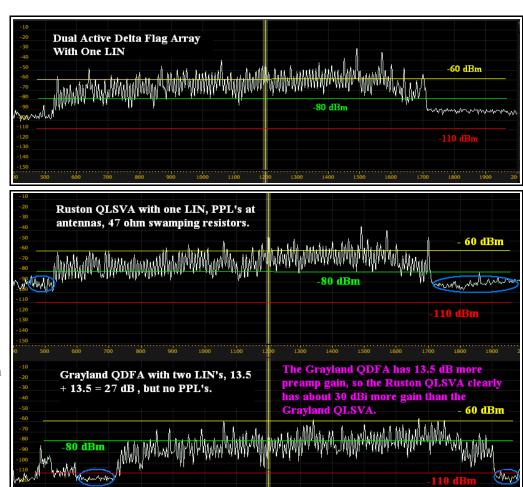

High Performance 100' Spaced Dual Active Delta Flag Array

Dallas Lankford, 5/2/2011


Quad active vertical arrays have finally earned a thumbs down from me. They have too many problems, namely, they must have good grounds, they have mutual impedance problems which are difficult, if not impossible, to solve completely, it is blatantly obvious that their null depth and null aperture are not as good as a 100' spaced dual delta flag array at the top end of the MW band, and it appears to be impossible to develop a good LORAN C notch filter for active vertical antenna elements. After putting back up a 100' spaced dual active delta flag array yesterday, I was astonished last night at how much better it was than the quad linear vertical array at the high end of the MW

band. It requires only 10' more linear space than the 50' spaced quad linear array. There is no better phased MW array which will fit in such a small space. See here for the Grayland dual passive delta flag array test in April 2009.

At right are Perseus displays of the dual active delta flag array, the quad swamped vertical array, and the Grayland QDFA.

It can be seen that the dual active delta flag array has more gain than the quad vertical array, and more than 30 dB more gain than the original 2009 QDFA. The greater than 90 degree null aperture to the North of the dual delta flag array means that you are seeing mostly Latin Americans on the dual active delta flag display and quad active vertical array, with a few domestics like WOAI 1200 and KRUS 1490 thrown in. Notice that there is no sign of WLAC Nashville 1510 on the dual active delta flag array display, but it is visible on the quad active vertical array display.

Lower atmospheric noise at Grayland due to lower gain of Grayland QDFA.